
Enhanced Compiler Bug Isolation via Memoized Search

Junjie Chen*„

College of Intelligence and
Computing, Tianjin University

China, Tianjin
junjiechen@tju.edu.cn

Haoyang Ma*
College of Intelligence and

Computing, Tianjin University
China, Tianjin

haoyang_9804@tju.edu.cn

Lingming Zhang
University of Illinois at

Urbana-Champaign
USA, IL, Urbana

lingming@illinois.edu

ABSTRACT
Compiler bugs can be disastrous since they could a�ect all the soft-
ware systems built on the buggy compilers. Meanwhile, diagnosing
compiler bugs is extremely challenging since usually limited de-
bugging information is available and a large number of compiler
�les can be suspicious. More speci�cally, when compiling a given
bug-triggering test program, hundreds of compiler �les are usu-
ally involved, and can all be treated as suspicious buggy �les. To
facilitate compiler debugging, in this paper we propose the �rst
reinforcement compiler bug isolation approach via structural mu-
tation, called RecBi. For a given bug-triggering test program, RecBi
�rst augments traditional local mutation operators with structural
ones to transform it into a set of passing test programs. Since
not all the passing test programs can help isolate compiler bugs
e�ectively, RecBi further leverages reinforcement learning to intel-
ligently guide the process of passing test program generation. Then,
RecBi ranks all the suspicious �les by analyzing the compiler exe-
cution traces of the generated passing test programs and the given
failing test program following the practice of compiler bug isolation.
The experimental results on 120 real bugs from two most popular C
open-source compilers, i.e., GCC and LLVM, show that RecBi is able
to isolate about 23%/58%/78% bugs within Top-1/Top-5/Top-10 com-
piler �les, and signi�cantly outperforms the state-of-the-art com-
piler bug isolation approach by improving 92.86%/55.56%/25.68%
isolation e�ectiveness in terms of Top-1/Top-5/Top-10 results.

CCS CONCEPTS
ˆ Software and its engineering � Software testing and de-
bugging; Compilers ; ˆ Theory of computation � Reinforce-
ment learning.

KEYWORDS
Compiler Bug Isolation, Fault Localization, Reinforcement Learning

*Both authors contributed equally to this paper.
„ Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ASE '20, September 21�25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . .$15.00
https://doi.org/10.1145/3324884.3416570

ACM Reference Format:
Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced Com-
piler Bug Isolation via Memoized Search. In35th IEEE/ACM International
Conference on Automated Software Engineering (ASE '20), September 21�
25, 2020, Virtual Event, Australia.ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3324884.3416570

1 INTRODUCTION
Compilers are one of the most fundamental software systems since
almost all software systems (ranging from operating systems, web
browsers, to script code written by end-users) are compiled by
them. Although dedicated e�orts have been devoted to ensuring
their quality, compilers are still error-prone due to their extremely
large-scale and complicated codebases [17,18,21,58,70]. In practice,
compiler bugs are very harmful, and can potentially a�ect all the
software systems compiled by the buggy compilers. Therefore, it is
essential to detect, isolate, and �x all possible compiler bugs.

In the literature, many approaches have been proposed to au-
tomatically detect compiler bugs [12� 14, 18, 19, 28, 58, 66, 70, 75],
but there is limited research e�orts dedicated to automated debug-
ging of compiler bugs, such as bug isolation and �xing. That is,
compiler bug isolation and �xing are still a rather tedious and time-
consuming process for modern compilers. In particular, compiler
bug isolation is a more fundamental problem since it also directly
helps with e�ective compiler bug �xing. Although many automated
bug localization approaches (such as spectrum-based [7, 27, 73],
slicing-based [69], mutation-based [34,45,48,51,74], and the recent
program-repair-based [9, 46] approaches) have been proposed for
common software systems, these existing approaches can hardly
isolate compiler bugs due to either extremely high costs or poor
e�ectiveness; please refer to the extensive discussion in a recent
work [16] for more details.

To facilitate compiler bug isolation, Chen et al. [16] proposed
the �rst approach, named DiWi, which transforms the problem
of compiler bug isolation to the problem of passing test program
generation. More speci�cally, given a failing test program, DiWi
�rst generates a set of passing test programs by traditionallocal
mutation operators (which change minimal program elements such
as modi�ers and constants), and then leverages existing bug local-
ization techniques [6, 36] to identify the compiler buggy �les by
comparing the execution traces between the generated passing pro-
grams and the given failing test program. Although the generated
passing test programs via DiWi has been demonstrated to perform
better than both developer-written test programs and the test pro-
grams generated by the widely-used compiler fuzzing technique
(i.e., Csmith [70]) for compiler bug isolation [16], DiWi still su�ers
from the e�ectiveness issue. For example, as demonstrated by the

ASE '20, September 21�25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

existing work [16] and our study (to be presented in Section 4.5),
developers using DiWi still need to check about 15 innocent �les
before �nding the really buggy one on average; about 62.5% studied
bugs cannot be successfully isolated after checking 5 most sus-
picious �les recommended by DiWi (please note that in practice,
most developers tend to abort the automated debugging tools if
they cannot localize buggy elements within Top-5 positions [38]).

To further advance state-of-the-art compiler bug isolation, in
this paper, we propose an enhanced compiler bug isolation ap-
proach via memoized search and structural mutation, calledRecBi
(Reinforcementcompiler Bug isolation). More speci�cally, since
compiler bugs tend to occur in the components of compiler opti-
mizations that tend to depend on test program structure, for a given
compiler bug with a failing test program, RecBi �rst augments the
traditional localmutation operators used by DiWi withstructural
mutation operators (which change the test program structure by
inserting some control-�ow-alerting statements such as branch
and loop statements) to e�ectively generate similar test programs
that can �ip the compiler execution results (i.e., fromfailing to
passing). This is because traditional local mutation operators usu-
ally have small in�uence on program structure due to its minor
modi�cation, while structural mutation operators can augment the
ability of changing program structure by e�ectively altering the
control-�ow of test programs and in the meanwhile optimizations
are often involved in compiler bugs and structural mutation is good
at skipping the buggy optimizations. However, not all the generated
passing test programs can facilitate isolating compiler bugs [16],
and thus casually or simply heuristically performing mutations on
the given failing test program may not be e�ective. Thus, RecBi
further incorporates reinforcement learning [37] (a kind of memo-
ized search), which can e�ectively learn both historical and future
knowledge, to intelligently guide how to conduct mutation in order
to generate a set of more e�ective passing test programs during
a given period. Finally, similar to the existing work [7, 16], RecBi
ranks all the suspicious �les according to their suspicious scores by
comparing the compiler execution traces between the generated
passing test programs and the given failing program. In a word,
the novelties of RecBi are twofold: 1)it opens a new dimension
for compiler bug isolation via structural mutation; 2) it leverages
reinforcement learning for more intelligent compiler bug isolation.

To evaluate the e�ectiveness of RecBi, we conducted an extensive
study based on 120 real compiler bugs from GCC [2] and LLVM [4],
which are the most widely-used C compilers in both industry and
academia [16, 41, 58, 70]. Our experimental results show that RecBi
is able to isolate 27, 70, 93, 107 bugs (out of 120 compiler bugs) within
Top-1, Top-5, Top-10, and Top-20 �les, respectively. That is, about
23%, 58%, 78%, and 89% bugs can be isolated successfully within
Top-1, Top-5, Top-10, and Top-20 �les through RecBi, respectively.
In particular, RecBi substantially outperforms the state-of-the-art
approach DiWi. For example, the improvements of RecBi over DiWi
are up to 92.86%/55.56% in terms of Top-1/Top-5 results, 45.55% in
terms of MFR (Mean First Rank, measuring the e�ectiveness in
detecting the �rst buggy �le for each bug), and 44.62% in terms of
MAR (Mean Average Rank, measuring the e�ectiveness in detecting
all the buggy �les for each bug). Furthermore, we investigated the
contributions of both major components in RecBi (i.e., structural

1 i n t p r i n t f (cons t char* , . . .) ;
2 i n t a , b =1 ;
3 i n t main () {
4 i n t i ;
5 f o r (i =0 ; i <56 ; i ++)
6 f o r (; a ; a��)
7 ;
8 i n t * c=&b ;
9 i f (* c)

10 * c =1%(uns igned i n t) * c | 5 ;
11 p r i n t f ("%d \ n " , b) ;
12 r e t u r n 0 ;
13 }

(a) Failing Program

1 i n t p r i n t f (cons t char* , . . .) ;
2 i n t a , b =1 ;
3 i n t main () {
4 i n t i ;
5 f o r (i =0 ; i <56 ; i ++)
6 f o r (; a ; a��)
7 ;
8 i n t * c=&b ;

9 while(a� �)

10 i f (* c)
11 * c =1%(uns igned i n t) * c | 5 ;
12 p r i n t f ("%d \ n " , b) ;
13 r e t u r n 0 ;
14 }

(b) Passing Program

Figure 1: GCC Bug 64682

mutation and reinforcement learning for passing test program gen-
eration), as well as the impacts of di�erent RecBi con�gurations.
To sum up, this paper makes the following main contributions:

� This work opens a new dimension of compiler bug isolation
via structural mutation, i.e., leveraging carefully designed
structural mutation operators for generating passing test
programs to boost compiler bug isolation.

� This work brings reinforcement learning to the compiler
bug isolation area for the �rst time, i.e., leveraging state-
of-the-art reinforcement learning to intelligently guide the
structural-mutation-based compiler bug isolation process.

� The proposed technique has been implemented as a practi-
cal compiler bug isolation system, named RecBi, based on
mature tools and libraries, i.e., Clang Libtooling library [1],
Gcov [3], and PyTorch [5].

� This work conducts an extensive study based on 120 real
compiler bugs from two most widely-used C compilers, i.e.,
GCC and LLVM, to evaluate the e�ectiveness of RecBi. The
results reveal the e�ectiveness of RecBi (signi�cantly out-
performing the state-of-the-art DiWi), the contribution of
each major component in RecBi, and the impacts of di�erent
RecBi con�gurations.

2 BACKGROUND
2.1 Test Program Mutation for Compiler Bug

Isolation
To solve the problem of compiler bug isolation, Chen et al. [16]
transforms this problem to the problem of passing test program gen-
eration. According to the idea of spectrum-based bug localization
(also called SBFL) [7, 67], all the compiler �les touched by a given
failing test program during compilation are suspects and passing
test programs are helpful to reduce the suspicion of innocent �les.
If a passing test program has similar execution trace (except the
buggy �les) with the given failing test program, the buggy �les
are more likely to be isolated by comparing the execution trace
between the passing test program and the given failing test pro-
gram. Therefore, DiWi designs three categories of local mutation
operators to produce such similar passing test programs by chang-
ing three minimal program elements (i.e., variables, constants, and
operators) of the given failing test program.

Although these traditional local mutation operators in DiWi
can generate some passing test programs as demonstrated by the

ASE '20, September 21�25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

1 v o l a t i l e
2 i n t a , b , c =2 ;
3 uns igned d ;
4 i n t main () {
5 i n t e =� 32;
6 d=� 31;
7 f o r (; d >2 ; d ++)
8 f o r (e + + ; ; b��)
9 i f (c)

10 break;
11 e&&a ;
12 r e t u r n 0 ;
13 }

(a) Failing

1 v o l a t i l e
2 i n t a , b , c =2 ;
3 uns igned d ;
4 i n t main () {
5 i n t e =� 32;
6 • d= � 31;
7 • f o r (; d >2 ; d ++)
8 • f o r (e + + ; ; b��)
9 • i f (c)

10 break;
11 • e&&a ;
12 r e t u r n 0 ;
13 }

(b) Locations

1 v o l a t i l e
2 i n t a , b , c =2 ;
3 uns igned d ;
4 i n t main () {
5 i n t e =� 32;

6 if(((long)(a-a))<1)

7 d=� 31;
8 f o r (; d >2 ; d ++)
9 f o r (e + + ; ; b��)

10 i f (c)
11 break;
12 e&&a ;
13 r e t u r n 0 ;
14 }

(c) Mutant

Figure 3: Example of Structural Mutation

3.1 Structural Mutation
The goal of mutation is to �ip the compiler execution result (from
failing to passing) by transforming a given failing test program.
As presented in prior work [16, 18, 19, 58], most of compiler bugs
occur in the components of compiler optimizations, while the trig-
gering of compiler optimizations tends to depend on the structure
of test programs. Therefore, transforming the structure of a given
failing test program is helpful to generate e�ective passing test
programs. However, the existing local mutation operators in DiWi
usually have small in�uence on program structure due to its minor
modi�cation, and thus we further explore structural mutation in
RecBi. More speci�cally, we design four structural mutation op-
erators, which insert four di�erent types of statements to a given
failing test program respectively, to change the control-�ow of the
failing test program. The four types of inserted statements are 1)
branch statements , 2)loop statements , 3)function calls , and
4) goto statements, since they are recognized to be e�ective to
change the control-�ow of a program [23, 24, 42].

Exceptgoto statements, the other three types of statements re-
quire additional ingredients (i.e., conditions in a branch or loop
statement, as well as the called function and its parameters in a func-
tion call) to complete insertion. However, it could be ine�cient to
casually construct these ingredients. As demonstrated by the exist-
ing work [16], although the state-of-the-art compiler bug isolation
approach DiWi outperforms the approach using the developer-
provided test programs to isolate compiler bugs, the latter is able
to perform no worse than the former in some cases. Therefore,
it may be promising to adapt the ingredients already within the
developer-provided test programs for our structural mutation. In
this way, the unique value of the developer-provided test programs
embodied in the existing work [16] can be incorporated by RecBi.

Figure 2 shows the overview of our structural mutation, which
consists of three steps. First, RecBi extracts all the branch condi-
tions, loop conditions, declared functions and the corresponding
function calls, in the developer-provided test programs for the com-
piler under test, as an ingredient pool. Second, RecBi randomly
selects an ingredient from the ingredient pool according to the
type of the statement to be inserted, and randomly selects an in-
sertable location in the seed test program. It would produce invalid
test programs or fake passing test programs [16] (i.e., the gener-
ated passing test programs are not really passing and just remove

Table 1: Summary of mutation operators in RecBi

ID Description

1 Insert a branch (i.e.,if) statement;
2 Insert a loop (i.e.,while) statement;
3 Insert a function call;
4 Insert agoto statement;
5 Insert/remove a quali�er (i.e.,volatile , const , andrestrict);

6
Insert/remove a modi�er (i.e.,long, short , signed, and
unsigned);

7 Replace a variable with another valid one
8 Replace a constant with another valid one;
9 Replace/remove an unary operator;
10 Replace a binary operator with another valid one.

the test oracles) when inserting a statement to an improper loca-
tion. There are three types of non-insertable locations in RecBi:
1) the locations outside functions, 2) the locations before decla-
rations for the sake of maintaining the identi�er scope, and 3)
the locations before the statements used as test oracles (such as
printf/__builtin_abort/return statements). Third, RecBi per-
forms insertion, and then conducts refactoring for new variables
in the selected ingredient, i.e., renaming the new variable to those
within the seed test program with compatible types, to make the
mutated test program valid. Figure 3 shows an illustrative example
for structural mutation, where Figure 3a is a failing test program,
Figure 3b identi�es all the insertable locations (denoted as•) in the
failing test program, and Figure 3c is a generated passing test pro-
gram via our structural mutation (by inserting a branch statement).

Local Mutation Operators. Besides these structural mutation op-
erators, RecBi also incorporates the traditional local mutation oper-
ators targeting the minimal program elements, which have been
studied by the existing work for compiler bug isolation [16]. The rea-
son is that 1) the generated test programs via these local mutation
operators have been demonstrated to outperform the developer-
provided test programs and the test programs generated via the
widely-used compiler fuzzing technique (i.e., Csmith [70]) [16], and
2) for the compiler bugs in the front-end component (although the
number of this type of compiler bugs is rare), local mutation could
be very useful. Therefore, RecBi has 10 mutation operators in total,
which are summarized in Table 1.

Test Oracles.After mutation, it is also required to check whether
the generated test program is passing or still failing [15,16]. Accord-
ing to the types of compiler bugs (i.e., crash bugs and wrong-code
bugs) [16, 20, 58], RecBi considers two types of test oracles ac-
cordingly. Regarding crash bugs (i.e., the compiler crashes when
using some compilation options to compile a test program), the
used test oracle is whether the compiler still crashes when using
the same compilation options to compile a generated test program.
Regarding wrong-code bugs (i.e., the compiler mis-compiles a test
program without any failure messages, causing the test program
to have inconsistent execution result under di�erent compilation
options), the used test oracle is whether a generated test program
still produces inconsistent execution results under the compilation
options producing inconsistencies before.

ASE '20, September 21�25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

of the current passing test program set) due to the following in-
tuition � when the size of the passing test program set is small, it
is preferable for RecBi to accept a new passing test program even
though it may decrease the diversity and similarity (because when
= is smaller, the actual delta is less important); but with the size
of the passing test program set increasing, we have less interests
to generate such low-quality passing test programs with RecBi.
Therefore, we incorporate= to re�ect such intuition in RecBi.

However, at each state only one mutation operator is selected
to generate a passing test program, and a mutation operator could
perform extremely di�erently due to various mutated locations,
which could lead to slow convergence for A2C. Moreover, it means
that the improved quality of the passing program set in the current
time step cannot precisely re�ect the e�ect of the selected mutation
operator. Therefore, to reduce the in�uence of various performance
of a mutation operator, RecBi combines the improved quality at
the current time step and the historically improved quality by the
current mutation operator as the actual reward obtained at the
current time step, instead of directly using the improved quality:

'4F0A3C=

Í C
8=1 � &8

) ¹< 8º
(6)

where,� &8=0 if the selected mutation operator is not< 8 at the
8th time step, otherwise� &8 is calculated by Formula 5, and) ¹< 8º
refers to the number of times that< 8 has been selected to mutate
the given failing test program.

3.2.2 Advantage Loss Function.After obtaining the actual reward
at the current time step, RecBi further uses CNN to obtain the
predicted potential reward. To better take the future factors into
account, A2C designs an advantage loss function in order to reduce
the high variance of the two neural networks and avoid falling into
the local optimal [63], which is shown in Formula 7:

� ¹Cº =
Ç DÕ

8=C

¹W¹8� Cº '4F0A38º ¸ WD%'Ç D � %'C (7)

where,Drepresents that CNN considers the futureDconsecutive
states and actions when predicting the potential reward,Wis the
weight of the actual future reward,PRt+u andPRCare the predicted
potential rewards at the (t+u)th andt th time steps by CNN respec-
tively. In particular, RecBi repeats the process in a time step forD
times and get the approximation of the actual future reward.

Based on the loss calculated by the advantage function in For-
mula 7, RecBi updates the weights of both ANN and CNN according
to Formula 8.

l = l ¸ V
m¹;>6%l ¹0CjBCº� ¹Cºº

ml
(8)

where,BCand0Care the current state and action,%l ¹0CjBCº refers to
the probability that0C is performed atBCbased on the parameters
l in ANN and CNN,V is the learning rate.

3.3 Compiler Buggy File Identi�cation
Based on the set of generated passing test programs and the given
failing test program, RecBi leverages the idea of SBFL to identify
the buggy compiler �les via comparing the coverage of failing
and passing tests [16]. More speci�cally, following prior work on
compiler bug isolation [16], RecBi �rst adopts state-of-the-art SBFL

formula, i.e., Ochiai [7] as shown in Formula 9, to calculate the
suspicious score of each statement:

B2>A4¹Bº =
45B

p
¹45B ¸ =5Bº¹45B ¸ 4?Bº

(9)

whereefB andnfB represent the number of failing tests that execute
and do not execute statementB, andepB represents the number
of passing tests that execute statementB. Since in RecBi there is
only one given failing test program,efB is 1. Moreover, RecBi only
considers the statements executed by the given failing test program,
and thusnfB is 0. Therefore, in RecBi the Ochiai formula can be
simpli�ed as:

B2>A4¹Bº =
1

p
1¸ 4?B

(10)

After obtaining the suspicious score of each statement, RecBi
further calculates the suspicious score of each compiler �le. Follow-
ing prior work [16], RecBi aggregates the suspicious scores of the
statements executed by the given failing test program in a compiler
�le as the suspicious score of the compiler �le:

(�$'� ¹5º =

Í =5
8=1B2>A4¹B8º

=5
(11)

where=5 is the number of statements executed by the failing test
program in the compiler �le5. According to the descending order of
the suspicious score of each compiler �le, RecBi produces a ranking
list of compiler �les, where the higher a compiler �le is ranked, the
higher possibility the �le has to be buggy.

4 EVALUATION
In this study, we aim to address the following research questions:

� RQ1: How does RecBi perform on compiler bug isolation?
� RQ2: How does each main component contribute to RecBi?
� RQ3: How does di�erent RecBi con�gurations impact the

e�ectiveness of RecBi?

4.1 Compilers and Bugs
In the study, we used both GCC and LLVM as subjects to investigate
the e�ectiveness of RecBi, covering almost all popular open-source
C compilers used in the existing work [13, 16, 21, 41, 70]. Regarding
the subject bugs, we used the released benchmark, including 120
real compiler bugs (60 GCC bugs and 60 LLVM bugs), including all
bugs from prior compiler bug isolation work [16]. Each compiler
bug contains the following information: the buggy compiler version,
the failing test program, the compilation options to reproduce the
bug, and the buggy �les (served as the ground-truth in our study).
On average, a GCC buggy version has 1,758 �les with 1,447K source
lines of code (SLOC), while a LLVM buggy version has 3,265 �les
with 1,723K SLOC.

4.2 Implementation and Parameters
We implemented our proposed approach RecBi based on Clang
Libtooling library [1], Gcov [3], and PyTorch [5]. They are used
to parse a test program to an AST (Abstract Syntax Tree), collect
compiler coverage information, and provide the framework of A2C,
respectively. Following the default setting in the existing work [8,
63], we also setWandV in A2C to be 0.9 and 0.01, respectively. In

Enhanced Compiler Bug Isolation via Memoized Search ASE '20, September 21�25, 2020, Virtual Event, Australia

RecBi, the default settings ofU andD are 0.8 and 5, respectively.
Note that we investigated the impacts of such main parameters
on RecBi in RQ3. Following the existing work [16], we set the
terminating condition to be one hour limit. That is, we compared all
the studied compiler bug isolation approaches under the same time
limit for fair comparison. To reduce the in�uence of randomness,
we repeatedly ran all the approaches for 5 times, and calculated
the median results. Our study is conducted on a workstation with
32-core CPU, 120G memory and Ubuntu 14.04 operating system.
We have released our tool and experimental data at our project
homepage:https://github.com/haoyang9804/RecBi .

4.3 Independent Variables
4.3.1 Compared Approaches.We compared RecBi with the state-of-
the-art compiler bug isolation approachDiWi [16] to answer RQ1.
DiWi isolates compiler bugs via local mutation and the traditional
MH (Metropolis-Hasting) algorithm [25], which depends on the
most recent behavior of each mutation operator to determine the
next mutation operator. Moreover, in traditional SBFL, developer-
provided tests are always used as the passing tests to reduce the
suspicion of innocent program elements. Thus, in RQ1 we also
investigated whether the generated passing programs via RecBi
outperform the developer-provided passing test programs for the
compiler under test. We call the approach using the latterDev,
which uses the same strategy to rank all the compiler �les as RecBi
(presented in Section 3.3) but uses the developer-provided passing
programs instead of the generated passing programs via RecBi.

In RQ2, we investigated the contributions of two main compo-
nents in RecBi, including newly designed structural mutation and
the reinforcement learning based test program generation strategy.
Therefore, we designed the following variants of RecBi.

� RecBimh replaces the reinforcement learning based test pro-
gram generation strategy with the traditional MH algorithm
used in DiWi. That is, RecBimh adopts the same strategy to
guide the process of test program generation as DiWi.

� RecBirand removes the reinforcement learning based test
program generation strategy from RecBi. That is, RecBirand
does not have any guidance to generate test programs by
randomly selecting a mutation operator in each time step.

� RecBi�lter removes the reinforcement learning based test
program generation strategy from RecBi, but keeps the part
of measuring the quality of a generated passing test program
since the measurement method is the base of the reinforce-
ment learning based test program generation strategy. That
is, RecBi�lter randomly selects a mutation operator in each
time step, then measures the quality of a generated passing
test program in the same way as RecBi, and �nally �lters
the low-quality passing test program (� &C < 0). Actually,
RecBi�lter is an updated version of RecBirand by adding a
measuring component.

We compared RecBimh and DiWi to investigate the contribution
of our designed structural mutation operators. We then compared
RecBi, RecBirand, and RecBimh to investigate the contribution of
our proposed reinforcement learning based test program gener-
ation strategy. Besides, we compared RecBirand and RecBi�lter to
investigate the e�ectiveness of our designed measurement for the

quality of a generated passing test program, which is the base of
our reinforcement learning based test program generation strategy.

4.3.2 Di�erent RecBi Configurations.In RQ3, we investigated dif-
ferent con�gurations of RecBi. Here, we discussed two main param-
eters in RecBi, includingU(used to combine similarity and diversity
as shown in Formula 4) andD(the number of future time steps that
RecBi takes into account in Formula 7). RegardingU, we studied
U= 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively. Here,U= 0 means that
RecBi only considers similarity, whileU= 1 means that RecBi only
considers diversity. RegardingD, we studiedD= 1, 2, 3, 4, 5, 6, and
7, respectively.

4.4 Measurements
Each compiler bug isolation approach produces a ranking list of
suspicious compiler �les, and thus we measured the position of
each buggy �le in the ranking list to measure the e�ectiveness of
each approach. Regarding the tie issue (i.e., multiple compiler �les
have the same suspicious scores), we adopted the worst ranking
following the existing work [35,52]. More speci�cally, we calculated
the following metrics, which are widely-used by the existing work
in the area of bug localization [16, 40, 48, 55].

� Top-n measures the number of bugs that are isolated suc-
cessfully within the Top-n position (i.e.,= 2 f1•5•10•20g in
our study) in the ranking list. The larger the Top-n value is,
the more e�ective the approach is.

� Mean First Ranking (MFR) measures the mean of the rank
of the �rst buggy �le in the ranking list for each bug. MFR
focuses on isolating the �rst buggy element fast in order to
facilitate debugging. The smaller the MFR value is, the more
e�ective the approach is.

� Mean Average Ranking (MAR) measures the mean of the
average rank of all buggy �les in the ranking list for each bug.
MAR focuses on isolating all buggy elements precisely. The
smaller the MAR value is, the more e�ective the approach is.

4.5 Results and Analysis
4.5.1 RQ1: Overall e�ectiveness of RecBi.We illustrated the com-
parison results among various approaches in Table 2. Overall, RecBi
is able to isolate 27, 70, 93, 107 compiler bugs (out of 120 compiler
bugs) within Top-1, Top-5, Top-10, and Top-20 �les, respectively.
That is, nearly 23%, 58%, 78%, and 89% bugs can be isolated success-
fully within Top-1, Top-5, Top-10, and Top-20 �les through RecBi,
respectively. We further analyzed the e�ectiveness of RecBi on
di�erent subject compilers, and surprisingly found that although
there are a larger number of compiler �les in LLVM compared
with GCC, RecBi achieves better results on LLVM than GCC. For
example, the MFR and MAR values of RecBi on LLVM are 7.77
and 7.85 respectively while those of RecBi on GCC are 8.75 and
9.35 respectively. Moreover, we found that the other approaches
indeed perform worse on LLVM than GCC. The results demonstrate
that, the e�ectiveness of RecBi is not a�ected when facing larger
compiler systems, indicating its scalability.

We then compared RecBi with the state-of-the-art compiler bug
isolation approach DiWi. From Table 2, RecBi performs better than
DiWi in terms of all the metrics and on both of subject compilers.

ASE '20, September 21�25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

Table 2: Compiler bug isolation e�ectiveness comparison

Sub Approach Top-1 *)>? � 1 Top-5 *)>? � 5 Top-10 *)>? � 10 Top-20 *)>? � 20 MFR * " � ' MAR * "�'

LLVM

RecBi 13 � 38 � 48 � 54 � 7.77 � 7.85 �
DiWi 6 116.67 23 65.22 37 29.73 47 14.89 16.80 53.75 16.92 53.61
Dev 2 550.00 12 216.67 22 118.18 37 45.95 37.36 79.20 37.49 79.06
RecBimh 10 30.00 31 22.58 42 14.29 50 8.00 11.17 30.44 11.48 31.62
RecBi�lter 7 85.71 27 40.74 42 14.29 49 10.20 13.77 43.57 17.91 56.17
RecBirand 3 333.33 29 31.03 39 23.08 49 10.20 40.12 80.63 40.16 80.45

GCC

RecBi 14 � 32 � 45 � 53 � 8.75 � 9.35 �
DiWi 8 75.00 22 45.45 37 21.62 49 8.16 13.53 35.33 14.15 33.92
Dev 3 366.67 12 166.67 25 80.00 32 65.62 22.44 61.01 23.04 59.42
RecBimh 13 7.69 30 6.67 41 9.76 49 8.16 10.52 16.83 10.92 14.38
RecBi�lter 14 0.00 30 6.67 43 4.65 50 6.00 10.10 13.37 10.30 9.22
RecBirand 4 250.00 18 77.78 26 73.08 39 35.90 19.40 54.90 19.99 53.23

ALL

RecBi 27 � 70 � 93 � 107 � 8.26 � 8.60 �
DiWi 14 92.86 45 55.56 74 25.68 96 11.46 15.17 45.55 15.53 44.62
Dev 5 440.00 24 191.67 47 97.87 69 55.07 29.90 72.38 30.26 71.58
RecBimh 23 17.39 61 14.75 83 12.05 99 8.08 10.84 23.80 11.20 23.21
RecBi�lter 21 28.57 57 22.81 85 9.41 99 8.08 11.93 30.76 14.10 39.01
RecBirand 7 285.71 47 48.94 65 43.08 88 21.59 29.76 72.24 30.08 71.41

* Columns �* � � present the improvement rates ofRecBi over a compared approach in terms of various metrics.

The overall improvements of RecBi over DiWi in terms of Top-1,
Top-5, Top-10, Top-20 are 92.86%, 55.56%, 25.68%, and 11.46%, re-
spectively. In particular, as demonstrated by the existing work [38],
the Top-5 metric is more important in practice since most devel-
opers tend to abort the automated debugging tools if they cannot
localize buggy elements within Top-5 positions [38], and thus RecBi
is more practical than DiWi by largely improving the e�ectiveness
of compiler bug isolation in terms of Top-5. The MFR and MAR
values of RecBi are 8.26 and 8.60 respectively while those of DiWi
are 15.17 and 15.53 respectively, demonstrating 45.55% and 44.62%
improvements of RecBi over DiWi respectively. That demonstrates
that RecBi indeed signi�cantly outperforms the state-of-the-art
approach DiWi for compiler bug isolation.

We also compared RecBi with the approach using the developer-
provided passing test programs Dev. From Table 2, RecBi signif-
icantly outperform Dev in terms of all the metrics and on both
GCC and LLVM. The overall improvements of RecBi over Dev are
440.00%, 191.67%, 97.87%, and 55.07% in terms of Top-1, Top-5, Top-
10, and Top-20, respectively. Also, the overall improvements of
RecBi over Dev are 72.38% and 71.58% in terms of MFR and MAR,
respectively. The results demonstrate the apparent superiority of
RecBi compared with Dev.

Qualitative Analysis. We further performed qualitative analysis
on RecBi with two examples. Figure 5 shows two programs, where
the left one is the given failing test program and the right one is a
passing test program generated via our designed structural muta-
tion (i.e., inserting awhile statement). This bug is triggered when
compiling the failing test program using GCC revision 228291 at
-O2and above. The root cause lies in the compiler �le "ifcvt.c ",
which incorrectly uses 8-bit registers for optimization instead of
32-bit ones. By inserting awhile statement with a false predicate,
a passing test program is generated as shown in Figure 5b, since it
invalidates the statement �c=(b&15)�e; � that triggers the buggy
optimizations. We further calculated the similarity between the two

1 i n t p r i n t f (cons t char * , . . .) ;
2 i n t a ;
3 i n t b =10 ;
4 char c ;
5 i n t main () {
6 char d ;
7 i n t e =5 ;
8 f o r (a =0 ; a ; a� �){ e = 0 ; }
9 c =(b &15)^ e ;

10 d=c >e ? c : c <<e ;
11 p r i n t f ("%d \ n " , d) ;
12 r e t u r n 0 ;
13 }

(a) Failing Program

1 i n t p r i n t f (cons t char * , . . .) ;
2 i n t a ;
3 i n t b =10 ;
4 char c ;
5 i n t main () {
6 char d ;
7 i n t e =5 ;
8 f o r (a =0 ; a ; a� �){ e = 0 ; }

9 while(e<a) { c =(b &15)^ e ; }

10 d=c >e ? c : c <<e ;
11 p r i n t f ("%d \ n " , d) ;
12 r e t u r n 0 ;
13 }

(b) Passing Program

Figure 5: GCC Bug 67786

1 i n t a ;
2 vo id fn1 () {
3 char b =0 ;
4 f o r (; b !=� 2; b��)
5 f o r (a =0 ; a <1 ; a ++)
6 i f ((uns igned i n t) b >1)
7 r e t u r n ;
8 }
9 i n t main () {

10 fn1 () ;
11 i f (a ! = 0)
12 _ _ b u i l t i n _ a b o r t () ;
13 r e t u r n 0 ;
14 }

(a) Failing Program

1 i n t a ;
2 vo id fn1 () {
3 char b =0 ;

4 goto Label;

5 f o r (; b !=� 2; b��)
6 f o r (a =0 ; a <1 ; a ++)

7 Label:

8 i f ((uns igned i n t) b >1)
9 r e t u r n ;

10 }
11 i n t main () {
12 fn1 () ;
13 i f (a ! = 0)
14 _ _ b u i l t i n _ a b o r t () ;
15 r e t u r n 0 ;
16 }

(b) Passing Program

Figure 6: LLVM Bug 24356

test programs following Formula 1, which is 0.974. That demon-
strates the power of our structural mutation that guarantees the
generated passing test program to share a similar execution trace
with the given failing test program. In particular, RecBi ranks the
buggy �le at the 2nd position.

Enhanced Compiler Bug Isolation via Memoized Search ASE '20, September 21�25, 2020, Virtual Event, Australia

Its basic insight is that if mutating a code element can change
the outcome of some failing tests, the code element may have po-
tential impact on the failing tests and thus may have been buggy.
Meanwhile, Zhang et al. [74] independently proposedFIFL, the
�rst mutation-based bug localization approach for evolving sys-
tems. The basic insight is that regression bugs can be simulated
and localized via mutating corresponding code elements on the old
program version. More recently, Moon et al. [48] proposed another
mutation-based bug localization approach, namedMUSE, based on
the idea that mutating faulty code elements may cause more failed
tests to pass than mutating correct elements. Di�erent from these
traditional mutation-based bug localization approaches, which aim
to mutate the software systems under test, our approach RecBi
aims to mutate the failing test cases (i.e., test programs) to generate
passing test programs for compiler bug isolation.

Learning-based Bug Localization. In recent years, a lot of learning-
based bug localization approaches have been proposed [40, 44, 55,
68]. For example, Xuan and Monperrus [68] proposed to utilize the
learning-to-rank algorithm to localize bugs by combining di�erent
suspicious scores calculated by SBFL. Le et al. [40] further consid-
ered both the suspicious scores calculated by SBFL and program
invariant to localize bugs through the learning-to-rank algorithm.
Recently, Li et al. [44] proposed to use deep learning techniques
to localize bugs by considering the suspicious scores calculated
by SBFL and mutation based bug localization, as well as static fea-
tures extracted from the defect prediction area [64] and information
retrieval area [26]. Di�erent from these learning-based bug local-
ization approaches, which use learning techniques to rank all the
suspicious code elements, our approach RecBi utilizes thereinforce-
ment learningalgorithm (i.e., A2C) to guide the process of passing
test program generation for compiler bug isolation.

7 CONCLUSION
In this paper, we propose a reinforcement compiler bug isolation
approach via structural mutation, which is called RecBi. RecBi �rst
augments traditional local mutation operators with structural ones
in order to generate a set of e�ective passing test programs for
a given compiler bug with a failing test program. In particular,
RecBi incorporates reinforcement learning to intelligently guide
the process of passing test program generation. Based on the set of
generated passing test programs and the given failing test program,
RecBi ranks all the suspicious �les by comparing the execution trace
between them. We conducted an extensive study to evaluate RecBi
based on two most popular C open-source compilers (i.e., GCC
and LLVM) and 120 real bugs from them. The experimental results
demonstrate the e�ectiveness of RecBi, signi�cantly outperforming
the state-of-the-art compiler bug isolation approach.

ACKNOWLEDGEMENTS
This work was partially supported by National Science Foundation
under Grant Nos. CCF-1763906 and CCF-1942430, and Alibaba.

REFERENCES
[1] Accessed: 2020. Clang Libtooling library. http://clang.llvm.org/docs/LibTooling.

html.
[2] Accessed: 2020. GCC. https://gcc.gnu.org.
[3] Accessed: 2020. Gcov. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[4] Accessed: 2020. LLVM. https://llvm.org.
[5] Accessed: 2020. PyTorch. https://pytorch.org/.
[6] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund. 2006. An Evaluation of Similarity

Coe�cients for Software Fault Localization. In2006 12th Paci�c Rim International
Symposium on Dependable Computing (PRDC'06). 39�46.

[7] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of
spectrum-based fault localization. InTesting: Academic and Industrial Conference
Practice and Research Techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89�98.

[8] Milan Aggarwal, Aarushi Arora, Shagun Sodhani, and Balaji Krishnamurthy. 2018.
Improving Search Through A3C Reinforcement Learning Based Conversational
Agent. In18th International Conference on Computational Science. 273�286.

[9] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the E�ective-
ness of Uni�ed Debugging: An Extensive Study on 16 Program Repair Systems.
In ASE. to appear.

[10] Jacqueline M. Caron and Peter A. Darnell. 1990. Bug�nd: A Tool for Debugging
Optimizing Compilers.SIGPLAN Notices25, 1 (1990), 17�22.

[11] Bor-Yuh Evan Chang, Adam Chlipala, George C. Necula, and Robert R. Schneck.
2005. Type-based veri�cation of assembly language for compiler debugging. In
Proceedings of TLDI'05: 2005 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation. 91�102.

[12] Junjie Chen. 2018. Learning to accelerate compiler testing. InProceedings of the
40th International Conference on Software Engineering: Companion Proceeedings.
472�475.

[13] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie.
2017. Learning to prioritize test programs for compiler testing. In2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 700�711.

[14] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. Test Case Prioritization for Compilers: A Text-Vector Based
Approach. In2016 IEEE International Conference on Software Testing, Veri�cation
and Validation. 266�277.

[15] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, Bing Xie, and
Hong Mei. 2016. Supporting oracle construction via static analysis. In2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 178�189.

[16] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler bug isolation via e�ective witness test program generation. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019. 223�234.

[17] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Lu
Zhang. 2019. Static duplicate bug-report identi�cation for compilers.SCIENTIA
SINICA Informationis49, 10 (2019), 1283�1298.

[18] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In
Proceedings of the 38th International Conference on Software Engineering. 180�190.

[19] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing.ACM Computing Surveys
(CSUR)53 (02 2020), 1�36.

[20] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Lu
Zhang. 2019. History-Guided Con�guration Diversi�cation for Compiler Test-
Program Generation. In34th IEEE/ACM International Conference on Automated
Software Engineering. 305�316.

[21] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu
Zhang, and XIE Bing. 2018. Coverage prediction for accelerating compiler testing.
IEEE Transactions on Software Engineering(2018).

[22] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Z. Fern,
Eric Eide, and John Regehr. 2013. Taming compiler fuzzers. InACM SIGPLAN
Conference on Programming Language Design and Implementation. 197�208.

[23] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep di�erential testing of JVM
implementations. InProceedings of the 41st International Conference on Software
Engineering. 1257�1268.

[24] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed di�erential testing of JVM implementations. InProceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 85�99.

[25] Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolis-
hastings algorithm.The american statistician49, 4 (1995), 327�335.

[26] Tung Dao, Lingming Zhang, and Na Meng. 2017. How does execution information
help with information-retrieval based bug localization?. InProceedings of the 25th
International Conference on Program Comprehension. 241�250.

[27] Nicholas DiGiuseppe and James A. Jones. 2011. On the In�uence of Multiple Faults
on Coverage-Based Fault Localization. InProceedings of the 2011 International
Symposium on Software Testing and Analysis. 210�220.

[28] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated testing of graphics shader compilers.Proc. ACM Program. Lang.1,
OOPSLA (2017), 93:1�93:29.

ASE '20, September 21�25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

[29] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. 2012.
A survey of actor-critic reinforcement learning: Standard and natural policy
gradients.IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews)42, 6 (2012), 1291�1307.

[30] Chris Hathhorn, Chucky Ellison, and Grigore Rosu. 2015. De�ning the unde�ned-
ness of C. InProceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 336�345.

[31] K. Scott Hemmert, Justin L. Tripp, Brad L. Hutchings, and Preston A. Jackson.
2003. Source Level Debugger for the Sea Cucumber Synthesizing Compiler. In
11th IEEE Symposium on Field-Programmable Custom Computing Machines. 228.

[32] Satia Herfert, Jibesh Patra, and Michael Pradel. 2017. Automatically reducing
tree-structured test inputs. InProceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. 861�871.

[33] Josie Holmes and Alex Groce. 2018. Causal Distance-Metric-Based Assistance
for Debugging after Compiler Fuzzing. In29th IEEE International Symposium on
Software Reliability Engineering. 166�177.

[34] Shin Hong, Byeongcheol Lee, Taehoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho
Kim, and Moonzoo Kim. 2015. Mutation-Based Fault Localization for Real-
World Multilingual Programs. InProceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering. 464�475.

[35] Dennis Je�rey, Neelam Gupta, and Rajiv Gupta. 2008. Fault localization using
value replacement. InProceedings of the 2008 international symposium on Software
testing and analysis. 167�178.

[36] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-
tula Automatic Fault-Localization Technique. InProceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. 273�282.

[37] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-
forcement learning: A survey.Journal of arti�cial intelligence research4 (1996),
237�285.

[38] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners'
expectations on automated fault localization. InProceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis. 165�176.

[39] Nico Krebs and Lothar Schmitz. 2014. Jaccie: A Java-based compiler-compiler
for generating, visualizing and debugging compiler components.Sci. Comput.
Program.79 (2014), 101�115.

[40] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-
to-rank based fault localization approach using likely invariants. InProceedings
of the 25th International Symposium on Software Testing and Analysis. 177�188.

[41] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. InACM SIGPLAN Conference on Programming Language
Design and Implementation. 216�226.

[42] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. InProceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. 386�399.

[43] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David
Majnemer, John Regehr, and Nuno P. Lopes. 2017. Taming unde�ned behavior
in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 633�647.

[44] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. InProceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
169�180.

[45] Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem
for fault localization.Proc. ACM Program. Lang.1, OOPSLA (2017), 92:1�92:30.

[46] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and
Lu Zhang. 2020. Can Automated Program Repair Re�ne Fault Localization? A
Uni�ed Debugging Approach. InISSTA. to appear.

[47] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. (2013).

[48] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
mutants: Mutating faulty programs for fault localization. In2014 IEEE Seventh
International Conference on Software Testing, Veri�cation and Validation. IEEE,
153�162.

[49] Kazunori Ogata, Tamiya Onodera, Kiyokuni Kawachiya, Hideaki Komatsu, and
Toshio Nakatani. 2006. Replay compilation: improving debuggability of a just-in-
time compiler. InProceedings of the 21th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 241�252.

[50] Mike Papadakis and Yves Le Traon. 2012. Using Mutants to Locate "Unknown"
Faults. InFifth IEEE International Conference on Software Testing, Veri�cation and
Validation. 691�700.

[51] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization.Softw. Test. Veri�cation Reliab.25, 5-7 (2015), 605�628.

[52] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 609�620.

[53] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. InACM SIGPLAN Conference
on Programming Language Design and Implementation. 335�346.

[54] Anthony M. Sloane. 1999. Debugging Eli-Generated Compilers With Noosa. In
Compiler Construction, 8th International Conference, CC'99, Held as Part of the
European Joint Conferences on the Theory and Practice of Software. 17�31.

[55] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: using code and change metrics to
improve fault localization. InProceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 273�283.

[56] Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Pérolat, Karl Tuyls,
Rémi Munos, and Michael Bowling. 2018. Actor-critic policy optimization in
partially observable multiagent environments. InAdvances in neural information
processing systems. 3422�3435.

[57] Pei-Hao Su, Pawel Budzianowski, Stefan Ultes, Milica Gasic, and Steve Young.
2017. Sample-e�cient actor-critic reinforcement learning with supervised data
for dialogue management.arXiv preprint arXiv:1707.00130(2017).

[58] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward under-
standing compiler bugs in GCC and LLVM. InProceedings of the 25th International
Symposium on Software Testing and Analysis. 294�305.

[59] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: syntax-guided program reduction. InProceedings of the 40th International
Conference on Software Engineering. 361�371.

[60] Richard Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. 2000. Pol-
icy Gradient Methods for Reinforcement Learning with Function Approximation.
Adv. Neural Inf. Process. Syst12 (02 2000).

[61] R. S. Sutton and A. G. Barto. 1998. Reinforcement Learning: An Introduction.
IEEE Transactions on Neural Networks9, 5 (1998), 1054�1054.

[62] Konda Vijay, R. and Tsitsiklis John, N. 2000. Actor-critic Algorithms.SIAM
Journal on Control and Optimization(April 2000).

[63] Mnih Volodymyr, Badia Adrià, Puigdomènech, Mirza Mehdi, and Graves Alex.
2016. Asynchronous Methods for Deep Reinforcement Learning. InICML2016.
1928�1937.

[64] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. InProceedings of the 38th International Conference
on Software Engineering. 297�308.

[65] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
2013. Towards optimization-safe systems: analyzing the impact of unde�ned
behavior. InACM SIGOPS 24th Symposium on Operating Systems Principles. 260�
275.

[66] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
Learning Library Testing via E�ective Model Generation. InThe 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. to appear.

[67] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization.IEEE Trans. Software Eng.42, 8 (2016),
707�740.

[68] Jifeng Xuan and Martin Monperrus. 2014. Learning to Combine Multiple Ranking
Metrics for Fault Localization. In30th IEEE International Conference on Software
Maintenance and Evolution. 191�200.

[69] Jifeng Xuan and Martin Monperrus. 2014. Test case puri�cation for improv-
ing fault localization. InProceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 52�63.

[70] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. InProceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283�294.

[71] Andreas Zeller. 2002. Isolating cause-e�ect chains from computer programs. In
Proceedings of the Tenth ACM SIGSOFT Symposium on Foundations of Software
Engineering. 1�10.

[72] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng.28, 2 (2002), 183�200.

[73] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In2011 27th IEEE Inter-
national Conference on Software Maintenance (ICSM). 23�32.

[74] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical
faults to localize developer faults for evolving software. InProceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications. 765�784.

[75] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enu-
meration for rigorous compiler testing. InProceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 347�361.

	Abstract
	1 Introduction
	2 Background
	2.1 Test Program Mutation for Compiler Bug Isolation
	2.2 Reinforcement Learning

	3 Approach
	3.1 Structural Mutation
	3.2 Test Program Generation via Reinforcement Learning
	3.3 Compiler Buggy File Identification

	4 Evaluation
	4.1 Compilers and Bugs
	4.2 Implementation and Parameters
	4.3 Independent Variables
	4.4 Measurements
	4.5 Results and Analysis

	5 Discussion
	5.1 Threats to Validity
	5.2 Future Work

	6 Related Work
	7 Conclusion

